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Figure 1. ConeGS replaces cloning-based densification with a novel method that generates pixel-cone-sized primitives in regions of high
image-space error. By improving placement and removing reliance on existing scene structure thanks to a flexible iNGP-based exploration,
it achieves higher reconstruction quality than baselines using the same number of primitives. Results are averaged over Mip-NeRF 360 [3]
and OMMO [33] datasets, with a visual comparison on the t ruck scene from Tanks & Temples [26].

Abstract

3D Gaussian Splatting (3DGS) achieves state-of-the-art
image quality and real-time performance in novel view syn-
thesis but often suffers from a suboptimal spatial distri-
bution of primitives. This issue stems from cloning-based
densification, which propagates Gaussians along existing
geometry, limiting exploration and requiring many primi-
tives to adequately cover the scene. We present ConeGS, an
image-space-informed densification framework that is in-
dependent of existing scene geometry state. ConeGS first
creates a fast Instant Neural Graphics Primitives (iNGP)
reconstruction as a geometric proxy to estimate per-pixel
depth. During the subsequent 3DGS optimization, it identi-
fies high-error pixels and inserts new Gaussians along the
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corresponding viewing cones at the predicted depth values,
initializing their size according to the cone diameter. A pre-
activation opacity penalty rapidly removes redundant Gaus-
sians, while a primitive budgeting strategy controls the total
number of primitives, either by a fixed budget or by adapt-
ing to scene complexity, ensuring high reconstruction qual-
ity. Experiments show that ConeGS consistently enhances
reconstruction quality and rendering performance across
Gaussian budgets, with especially strong gains under tight
primitive constraints where efficient placement is crucial.

1. Introduction

Neural Radiance Fields (NeRF) [37] have significantly ad-
vanced novel view synthesis, achieving remarkable fidelity
in scene reconstruction. However, representing scenes with
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Figure 2. Densification comparison. Cloning-based methods are
difficult to tune, and the resulting primitives may require many it-
erations to fit correctly into the scene. ConeGS, by contrast, places
primitives precisely using the pixel viewing cone size, enabling
faster scene integration without reliance on the existing geometry.
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neural networks makes NeRF slow to train and render,
though it provides smooth parameterization and flexibility
to handle changes in scene structure. Recently, 3D Gaussian
Splatting (3DGS) [24] has gained attention as a faster, more
practical alternative to NeRF, explicitly modeling scenes
with sets of 3D Gaussians to achieve interactive rendering
speeds while maintaining competitive visual fidelity. How-
ever, 3DGS increases expressiveness through cloning and
splitting, which offer limited exploration, rely on hard-to-
define densification rules, and generate many unnecessary
primitives. As a result, primitives often accumulate in sub-
optimal regions, leaving large parts of the scene underrep-
resented or mispredicted.

To address these issues, we propose ConeGS, which
replaces cloning-based densification with a novel strategy
that targets pixels exhibiting high photometric error. By
sampling these pixels and using depth estimates from a
fast Instant Neural Graphics Primitives (iNGP) [39] recon-
struction, new Gaussians are placed precisely in regions
where the current representation is insufficient. This tar-
geted placement increases expressiveness in areas requiring
higher primitive density, improving reconstruction quality
while avoiding redundant primitives. To determine the size
of new Gaussians, we draw inspiration from Mip-NeRF [2].
During densification, each Gaussian is initialized according
to the size of the viewing cone of the pixel from which it is
generated at the specified depth. Their initial size is thus
defined directly by their image-space coverage, eliminat-
ing the need for local size analysis or adjustments to recon-
structed regions. Figure ~ illustrates the effectiveness of the
proposed approach. Combined with a pre-activation opac-
ity penalty that quickly removes redundant Gaussians, this
enables scene representation with fewer primitives while
preserving high reconstruction quality. We further incorpo-
rate two primitive budgeting strategies to regulate the total

number of primitives, either through a fixed budget or by
adapting to scene complexity. ConeGS outperforms base-
line methods across diverse datasets and a wide range of
primitive budgets. The advantage is most pronounced un-
der tight primitive budgets. At higher budgets, it matches
the quality of cloning-based methods, where efficient prim-
itive placement is less critical, while still rendering faster
than the baselines. In summary, our contributions are:

* A densification strategy that places new Gaussians in re-
gions of high photometric error in image space, guided by
depth estimates from an iNGP-based geometric proxy.

* An approach that determines the size of new Gaussians
from the viewing cones of the pixels from which they are
generated.

* An improved opacity penalty that promptly removes low-
opacity Gaussians, combined with a budgeting strategy
that balances scene complexity and primitive count.

Finally, our method is also compatible with other 3DGS
improvements, making it straightforward to integrate with
existing approaches for greater efficiency, or with methods
where cloning strategies are ambiguous or hard to formal-

ize [20, 34, 49].

2. Related work

Neural Radiance Fields: NeRFs [37] represent scenes
as continuous volumetric radiance fields, enabling high-
quality novel view synthesis. This is achieved by pa-
rameterizing the scene with a neural network (typically
an MLP), whose weights encode the scene globally. De-
spite producing photorealistic results, these methods rely
on costly volumetric rendering and remain computationally
inefficient. Extensions such as Mip-NeRF [2] and Mip-
NeRF360 [3] reduce aliasing via conical frustum integra-
tion, while Zip-NeRF [4] improves view consistency with
hierarchical sampling and multi-scale supervision. Hybrid
approaches [7, 45, 46, 56] mitigate this by combining ex-
plicit data structures with compact neural representations,
enabling faster optimization and real-time rendering. In-
stant Neural Graphics Primitives (iNGP) [39] further accel-
erate training through multi-resolution hash-grid encoding
and shallow MLPs.

Primitive-based Differentiable Rendering: 3D Gaussian
Splatting (3DGS) [24] has emerged as an efficient alterna-
tive to Neural Radiance Fields (NeRF) [37]. Rather than
modeling the scene as a global volume, 3DGS represents
it with local explicit 3D Gaussians and uses differentiable
rasterization, resulting in significantly faster rendering. Its
balance of fidelity and efficiency has attracted significant
attention and spurred a wide range of follow-up research.
Prior works have focused on tackling anti-aliasing [53, 57],
reconstructing dynamic scenes [52, 54], enabling gener-
ative content creation [48, 66], reducing rendering arti-



facts [43], substituting alpha composition with volumetric
rendering [35, 47], extracting geometry [16, 21, 58], level-
of-detail reconstruction [44], frequency-based regulariza-
tion [59, 60], and introducing new primitives or kernel func-
tions [18, 20, 31, 49]. Recent efforts have also targeted re-
ducing computational and memory costs, often through fea-
ture quantization or code-book encoding [10, 15, 34, 41],
or scene simplification [63]. [11] reduces computation by
lowering the number of primitives through an aggressive
densification and pruning strategy, while [11, 12, 64] insert
new Gaussians at the currently estimated depths using re-
initialization. Unlike our method, this approach overwrites
existing structures instead of adding new points, and further
depends on the scene already being well reconstructed. [25]
improves primitive distribution and exploration by incor-
porating positional errors and applying penalties to opac-
ity and scaling. Closely related to our approach, several
works focus on improving densification to reduce redun-
dancy and better capture fine details. Strategies include re-
fining cloning heuristics [5, 22, 25], per-Gaussian property-
or saliency-based cues [36], geometry- and volume-aware
criteria [1, 23, 65], addressing gradient collision [55], per-
ceptual sensitivity [64], learnable schemes [32, 40], and
based on Gaussian Processes [17]. Some works target den-
sification in challenging settings [38], filling holes in the
representation [9, 29], though typically adding only a few
primitives. PixelSplat [6] models dense probability distri-
butions for more robust Gaussian placement, influencing
later approaches [8]. Recent work [27] suggests that den-
sification may be unnecessary for high-quality reconstruc-
tion given strong initialization. Like our method, they start
by estimating scene geometry, but rely only on correspon-
dences from a pretrained dense matching network, without
enhancing densification, and at higher GPU memory cost
than our approach. Concurrent work [62], employs Gaus-
sians with spatially varying texture colors, improving fine-
detail reconstruction and reducing the number of primitives
needed. Other methods use neural radiance fields for depth
supervision [14, 28] or point cloud extraction [14, 42, 50] to
initialize a scene, but not to improve densification directly.
Concurrent work [13] applies NeRF for initialization and
limited densification, constrained by existing Gaussian lo-
cations, and does not explore varying Gaussian sizes, which
we find beneficial for reconstruction quality.

3. Preliminaries

3D Gaussian Splatting:  3DGS [24] represents a scene
as an unordered set of 3D Gaussian primitives {G;|i =
1,...,M}. Each primitive G; = (ps,s;, Ri, 04, ¢;) is de-
fined by its position p; € R3, scaling vector s; € R3,
rotation matrix R; € R3%3, opacity o; € R, and view-
dependent color ¢; € R3. The color c; is represented by

spherical harmonics (SH) coefficients k; € R3L, where
L is the number of coefficients determined by the chosen
SH order. The 3D covariance matrix is given by ¥; =
R;S;SIRT, where S; = diag(s;) is the scaling matrix.
The color C of a pixel is computed by a-blending over a set
of N Gaussians, sorted by depth, whose projections overlap
the pixel:

C= ZiEN CiQ; H;;ll(l — o), (1)

a; = 0;K (pe, pi°, TP), 2)

where «; is the blending weight of the ¢-th Gaussian, p,
is the pixel center in image coordinates, p2° and 32 are
the 2D projected mean and covariance of G;, and K (+) is a
Gaussian filter response in screen space. The exact form of
K depends on the chosen filter [24, 57, 67]. Gaussians are
traditionally initialized from an SfM point cloud, with each
component of s; set equal to the mean Euclidean distance
to the three nearest neighbors N3(7) of Gaussian i:

1
i =3 > | lpr—pill - )
keN3(4)

S; = (52’731'731‘)’

During training, the Gaussian parameters are optimized
with the loss:

Lgs = (1 — )\) MAE(I, I*) +AXLp.ssim, @

where A = 0.2, MAE is the mean absolute error between
the rendered image I and the ground-truth image I*, and
Lp.ssim =1 — SSIM(Z, I*) [51].

Neural Radiance Fields: NeRFs [37] model a scene as a
continuous 3D field that maps a 3D location along a camera
ray and the viewing direction of the corresponding pixel to
a density ¢ € R and color ¢ € R3. A camera ray is pa-
rameterized as r(t) = Peam + td, Where peum is the camera
position and d is a unit direction vector pointing toward the
center of a pixel. Each ray is discretized into N intervals
defined by distances {t;,¢;11}~ ,. For each sample posi-
tion r(¢;) along the ray, the NeRF is queried to predict the
sample’s color c; and density ;. Using volumetric render-
ing [37], the corresponding pixel color is approximated as:

C = Zjvzl Ci; H;:(l —aj), 5)

a; =1— exp(—oiéi) with §; = tiv1 — ti. (6)
Here, «; is the opacity of the i-th sample, §; is the length
of its ray segment, and the product term represents the trans-
mittance 7; = H;;ll(l — aj).
Sampling only a single ray per pixel can lead to blur and
aliasing. Mip-NeRF [2] addresses this by replacing the ray



with a cone that models the pixel footprint, i.e. the 3D vol-
ume a pixel covers in world space. The cone is divided into
frustums, and integration is performed over these volumes
rather than along a 1D line. The cone’s radius 7cone(t) de-
fines the cross-section of the pixel cone at distance ¢ and is
computed from the directions of rays passing through the
pixel and its neighbors:

I —dl iy —dl
where d is the direction of the ray through the center of

the pixel, and d,, d, are the directions of rays through the

neighboring pixels in the x and y directions, respectively.

Tcone (t) =t

4. Method

This section outlines our ray-based densification approach
for 3DGS. First, we explain how we use an iNGP model as
a geometric proxy to initialize the 3D Gaussian scene (Sec-
tion - ). Next, we detail our ray-based densification strat-
egy, which uses the iNGP to place pixel-cone-sized Gaus-
sians in high-error regions, along with associated optimiza-
tion changes (Section - ). Finally, we provide additional
implementation details in Section - °. An overview of the
complete pipeline is shown in Figure

4.1. Initialization

We use a trained iNGP model [39] as a geometric proxy to
initialize the 3DGS scene and guide densification. Trained
briefly on input images, it provides accurate depth esti-
mates, that position both the initial Gaussian primitives and
those added later during densification, with minimal impact
on training time. Additionally, the depths can be evaluated
on the fly during optimization, reducing both memory us-
age and computation compared to precomputing all depth
maps. We initialize the scene with P;y;; Gaussians, set to
one million as in [42], or fewer if a smaller budget is spec-
ified (see Section - ). To construct this set, we uniformly
sample Py image-pixel pairs (I, u, v) from the training set
pixel domain Zi.,;,. Each sampled image-pixel pair defines
exactly one Gaussian in the initialized scene. For each sam-
ple, we define its associated camera ray

I‘[(U,'U,t) = Pr +td1(u,v), (8)

where [ is an image index, (u,v) are pixel coordinates,
pr € R? is the camera center, and d;(u,v) € R? is the
normalized ray direction. We query the iNGP along this ray
to obtain discrete transmittance values {7y}, from which the
median depth t,eq is computed as:

tmeda = tr, Where Tr_1 > 0.5 > 7. 9)
The center of the j-th Gaussian primitive is then set to:

p] = p] + tmed d[(u7 U)u (10)

yielding the set of initial centers {p;}jczsample With
Zample C ZLyain- The scale s; is initialized isotropically
using the average distance to the three nearest neighbors
N3(7), following Eq. (°). The rotation is set to identity
R; =1, the opacity to o; = 0.1, and the SH coefficients to:

kj = (ki  karj), kyr,; =0,
an
where c; o is the RGB color for the sampled pixel (1, u, v)
rendered with iNGP using a zeroed-out view direction. Al-
though our densification strategy can achieve high-quality
reconstructions without scene initialization, we retain this
step to ensure consistently strong performance across all

metrics (see Section = ).

ki:3,; = €0,

4.2. Optimization

We fully replace the standard 3DGS cloning-based densifi-
cation with an error-guided strategy that adapts the iNGP-
based ray-depth rendering procedure from Section to
position new Gaussian primitives. Below, we outline the
sampling, scaling, budgeting, and pruning stages of our
densification pipeline.

Error-Weighted Gaussian Densification: To limit the
number of primitives while targeting poorly reconstructed
regions, we add new Gaussians at pixels with high photo-
metric error. At iteration j, we render an image /; and
compute the per-pixel absolute error (L, loss) E(p) =
|I;(p) — I*(p)| with respect to the ground-truth image I*.
We then sample Ngampie pixels without replacement accord-
ing to a multinomial distribution M with probabilities pro-
portional to the normalized error map:

Ngample E(p)
{ps}szl ~ M <N§ample; m) , (12)

p'€El;

While L; loss does not always indicate possible im-
provements and can also arise from noise or difficult-to-
optimize reflections, we found it to be a reliable indication
of lacking expressiveness, especially at low primitive bud-
gets. For each sampled pixel p;, a new Gaussian G is cre-
ated, with its center placed along the corresponding ray at
the median depth ¢;,cq,s given by the INGP. Newly spawned
Gaussians are appended to an accumulation set:

Gaceum 4 Gaoeun U {G }omw (13)

Every 100 iterations, low-opacity Gaussians in the scene
Gscene are pruned, and Gaussians in G,eqym are merged into
the scene:

gscene — gSCCHC U gaccum7 gaccum — @ (14)

The newly inserted Gaussians are then jointly optimized
with existing primitives. Unlike cloning-based methods,
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Figure 3. Overview of the ConeGS pipeline. (a) First, an iNGP reconstruction is obtained to serve as a geometric proxy for object
surfaces, guiding the placement of Gaussians both during scene initialization and throughout the 3DGS optimization process. (b) During
3DGS optimization, ConeGS performs error-guided densification by sampling a subset of pixels with high L; error. For each sampled
pixel, a new Gaussian G is created along the pixel’s viewing cone at the depth estimated by iNGP and scaled to match the cone’s size. New
Gaussians are accumulated and, every 100 iterations, inserted into the scene after pruning those with low opacity. Blue arrows indicate

to Gaussian parameters, and the red arrow marks

which constrain new primitives to the vicinity of exist-
ing ones and thus hinder exploration of unseen regions,
our approach places Gaussians directly in high-error ar-
eas, enabling effective scene coverage even far from exist-
ing geometry. Moreover, we preserve the integrity of well-
reconstructed areas, since new Gaussians are added on top
of the existing structure rather than created through splitting
or cloning. Although occasional iNGP depth inaccuracies
may introduce misplaced Gaussians, diverse viewpoint cov-
erage ensures that inconsistent ones are quickly corrected or
pruned, while multiview-consistent ones are retained. The
full densification pipeline is shown in Figure

Pixel-Footprint-Aligned Scaling: Selecting an appropri-
ate scale for newly added Gaussians during densification is
crucial. If primitives are too large, they may obscure fine
details and be pruned prematurely, whereas overly small
ones contribute little to the rendered image, yielding weak
gradients and slowing convergence. Although £-NN-based
scaling is effective for initialization, recomputing nearest-
neighbor distances at every densification step is computa-
tionally expensive and sensitive to outliers. Large distances
can produce inflated scales, causing new Gaussians to over-
lap well-reconstructed regions and hinder further optimiza-
tion (see Section ). To avoid these issues, we set the
initial scale of each newly added Gaussian directly from the
pixel footprint at the median depth ty,cq; along its corre-
sponding camera ray, as defined in Eq.

Si = Ascale rcone(tmed,i) (17 1, 1)7 (15)

where Asale = 2 converts the cone radius 7eone(tmed,i) t0
the diameter of its cross-section. This ensures that, from
the spawning viewpoint, the Gaussian’s projection onto the
image plane approximately matches the pixel width, inde-
pendent of scene depth. The assigned scale is only an ini-
tial value, with subsequent optimization steps jointly updat-
ing all primitives to allow newly added Gaussians to adjust
to the existing scene. Our pixel-aligned, depth-aware scal-
ing provides three key benefits: (1) it is independent of the
current primitive distribution, avoiding the structural biases
of cloning-based methods that replicate and reinforce lo-
cal geometry, (2) pixel size allows Gaussians to contribute
to optimization immediately and efficiently fit fine details
while minimizing overlap with existing structure, and (3)
its isotropic shape promotes stable multi-view integration,
without shapes that the cloned Gaussians inherit.

Primitive Budgeting: We consider two budgeting strate-
gies for controlling the number of Gaussians in the scene.
The first enforces a hard upper bound, as in [25], ensur-
ing that densification never exceeds the prescribed budget.
This constraint regulates memory and computation while
preventing uncontrolled growth of the primitive set. At
each densification step, we set the number of sampled pix-
els Ngmple S0 that newly added Gaussians replace those
pruned, avoiding excess primitives that would otherwise be
discarded under the budget. This is computed as:

max(0.2Ngs, 1.2Nps)
100 ’

Mample = (1 6)
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Figure 4. Densification overview. Illustration of the proposed
error-guided strategy. We render an image with 3DGS, compute
the per-pixel L; error, sample pixels proportionally to their error
magnitude, and place new Gaussians at the iNGP-predicted depth
along the corresponding viewing rays.

where Ngg is the current total number of Gaussians, and
Npagt 1s the number of primitives inserted in the previous
densification step, and the division by 100 reflects the den-
sification interval. This formulation keeps Ngg close to
the budget limit even under aggressive pruning, maintain-
ing consistent scene coverage throughout optimization.

The second strategy adapts the number of primitives to
the scene’s complexity, enabling controlled growth without
imposing a fixed upper bound:

BNgs
100

Here, S controls the growth rate of the primitive set.
Smaller values balance the number of Gaussians added
with those pruned, maintaining a relatively stable primitive
count, whereas larger values yield higher primitive counts,
increasing geometric detail at the cost of memory and com-
puting power. With scene initialization at 1M primitives and
the application of the opacity penalty, we balance Gaussians
added and pruned, unlike [5], which requires a predefined
upper limit on primitives.

Nsample = 17

Opacity-Regularized Pruning: Following [24, 25], Gaus-
sians with opacity below 0.005 are pruned every 100 itera-
tions to remove primitives with negligible contribution to
the rendered image. Earlier work has promoted sparsity
through different strategies: periodically resetting opaci-
ties [24], which can destabilize training [5], reducing opac-
ities by a constant amount after each densification [5],
or introducing a post-activation opacity penalty £5™ =
llo(opre)||1 [251, where oy denotes the opacity logits be-
fore the sigmoid and o is the sigmoid function. This ap-
plies the strongest constraint around 0.5 and only a weak
penalty near the pruning threshold. In contrast, we employ
a pre-activation opacity penalty £5° = ||0pre|1. It provides
a steady constraint across the full opacity range, includ-
ing very low values, gradually reducing under-contributing
primitives. The penalty acts throughout training, and our
densification strategy can freely add new primitives, allow-
ing any structure lost through pruning to be recovered more

easily than with cloning-based approaches. In all experi-
ments, this loss is scaled by A, = 0.0002.

4.3. Implementation Details

For the iNGP model, we use the proposal-based implemen-
tation from NerfAcc [30], trained for 20k iterations with the
original setup and architecture. Gaussian optimization runs
for 30k iterations, with our densification active for the first
25k. Unlike 3DGS, all SH components are optimized from
the start, enabled by the stable initialization that removes
the need for gradual SH introduction.

5. Evaluation

Dataset and Metrics: We evaluate our method on pub-
licly available scenes from Mip-NeRF360 [3] and OMMO
dataset [33], with 01 scene from OMMO resized to have
1600 pixels width. Following [24, 25], we also include
the train and truck scene from Tanks & Temples [26],
as well as Dr Johnson and playroom from the Deep-
Blending [19] dataset. We report PSNR, SSIM [51], and
LPIPS [61], with rendering speeds averaged across the
full test set. All FPS measurements were recorded on an
NVIDIA RTX 2080 Ti, whereas training speeds are re-
ported on an NVIDIA A100, since EDGS requires more
memory. These training speeds do not include later-added
speed improvements [36].

Baselines: = We primarily compare our method against
3DGS [24], it’s extension with iNGP point cloud initializa-
tion [14], MCMC [25] using different initialization types
(random, SfM, iNGP point clouds), as well as, Gaus-
sianPro [9], Perceptual-GS [64], EDGS (with densifica-
tion) [27], with the densification stopped for all of them
if the primitive budget is reached. If the number of prim-
itives at initialization would be higher than the specified
budget, the number of primitives is sampled uniformly to
fit below it. In the random initialization settings we follow
the process described in MCMC [25]. We additionally test
on Mini-Splatting2 [11] by matching their final number of
primitives instead of a specific budget, due to their method
relying on generating a high number of initial Gaussians.

5.1. Results

We observe improvements over the baselines across a wide
range of specified budgets in Table |, with plots comparing
the most important methods on the budget and no-budget
scenario in Figure ©. For a lower limit on Gaussians, we
outperform the benchmarks across all datasets and metrics,
while providing a competitive reconstruction quality com-
pared to the best performing baselines on the high budget
scenarios. In Table ~ we additionally show that even on a
high number of primitives of 1M and including the iNGP
training, our method provides competitive speed to other



Mip-NeRF360 [3] OMMO [33] Tanks & Temples [26] DeepBlending [19]
PSNRT SSIMt LPIPS| | PSNRT SSIMt LPIPS| | PSNRT SSIMt LPIPS| | PSNRT SSIM?T LPIPS|

Number of Gaussians limited to 100k

3DGS [24] (SfM init.) 23.61 0.693 0.413 26.45 0.820 0.296 22.38 0.774 0.333 24.65 0.827 0.412
Foroutan et al. [14]F 26.64 0.781 0.318 26.89 0.829 0.276 22.48 0.766 0.341 25.31 0.822 0.418
MCMC [25] (rand. init.) 25.72 0.730 0.369 25.92 0.808 0.313 21.45 0.750 0.365 27.94 0.859 0.369
MCMC [25] (SfM init.) 27.06 0.800 0.303 27.01 0.841 0.266 22.50 0.780 0.332 28.94 0.876 0.333
MCMC [25] (iNGP init.) 27.35 0.797 0.299 26.95 0.837 0.265 22.69 0.775 0.326 29.02 0.872 0.337

GaussianPro [9] 25.57 0.766 0.338 26.14 0.822 0.289 20.59 0.757 0.348 28.15 0.870 0.342

Perceptual-GS [64] 25.66 0.774 0.320 26.13 0.819 0.292 20.76 0.759 0.347 28.32 0.874 0.338

EDGS [27] 27.09 0.798 0.296 26.99 0.838 0.261 22.32 0.777 0.324 28.43 0.872 0.337

Ours 27.74 0.809 0.285 27.59 0.852 0.243 23.12 0.791 0.310 29.44 0.880 0.328
Number of Gaussians limited to 500k

3DGS [24] (SfM init.) 28.22 0.821 0.260 28.96 0.883 0.196 23.54 0.816 0.265 29.25 0.882 0.302

Foroutan et al. [14] 28.88 0.862 0.204 28.80 0.884 0.185 23.52 0.816 0.257 29.61 0.886 0.297

MCMC [25] (rand. init.) 28.38 0.844 0.237 28.23 0.874 0.212 22.96 0.808 0.279 28.84 0.875 0.315
MCMC [25] (SfM init.) 28.82 0.861 0.214 28.72 0.885 0.194 23.68 0.825 0.259 29.44 0.887 0.308
MCMC [25] (iNGP init.) | 29.02 0.867 0.198 28.75 0.885 0.186 23.57 0.823 0.243 29.61 0.885 0.288

GaussianPro [9] 28.02 0.827 0.253 28.32 0.876 0.206 22.31 0.802 0.286 29.33 0.886 0.301
Perceptual-GS [64] 28.66 0.856 0.211 28.42 0.876 0.203 22.77 0.813 0.267 29.44 0.888 0.296
EDGS [27] 28.82 0.865 0.193 29.01 0.893 0.168 23.47 0.831 0.229 29.33 0.889 0.286
Ours 29.08 0.870 0.190 29.14 0.892 0.170 23.69 0.829 0.229 29.86 0.891 0.285

Number of Gaussians bounded by Mini-Splatting2 [11]

Mini-Splatting2 [11] 28.89 0.875 0.183 28.06 0.875 0.198 22.79 0.823 0.239 29.99 0.898 0.279
Ours 29.26 0.875 0.179 28.90 0.887 0.179 23.66 0.829 0.231 29.82 0.891 0.280

f Original code was not publicly available. Our implementation uses iNGP initialization and does not include the additional depth-based loss.

Table 1. Quantitative results with a Gaussian number limit of 100k and 500k. Mini-Splatting2 [11] does not support constraining the
number of Gaussians during reconstruction, so we match its Gaussian count. We highlight the best, second best and third best results
among methods with the same Gaussian counts. Per-scene metrics for selected methods are provided in the supplementary material.

EDGS [27] MCMC [25] Ours GT

Room [3]
(50k)
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[19] (100k)

05 [33]
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3 [33]

Figure 5. Qualitative results comparing our method with MCMC [25] (with SfM point cloud initialization) and EDGS [27] on the Mip-
NeRF 360 [3], OMMO [33], and DeepBlending [19] datasets, with varying Gaussian budgets (given in parentheses).

methods. The qualitative results in Figure & show signif- pecially in areas that are challenging to properly capture on
icant improvement using a wide range of primitive bud- a low budget, such as isolated or high frequency structures.
gets, demonstrating that for the same limit of primitives our We provide additional qualitative and quantitative results,
method is able to produce a much better reconstruction, es- along with further scene analysis, in the appendix.



Budget No budget

10k 50k 100k 200k 500k 1M M 441k 548k 750k 1.27M 2.19M

10k 50k 100k 200k 500k 1M M 441k 548k 750k 1.27M 2.19M

10k 50k 100k 200k 500k ™ 2M 441k 548k 750k 127M 2.19M
# Gaussians # Gaussians.

—— ConeGS === MCMC (SfM init.) —-= MCMC (rand. init.) === EDGS

Figure 6. PSNR, LPIPS and FPS plots with (left) and without
(right) a primitive budget, where counts correspond to /3 values.
Averaged across Mip-NeRF360 [3] and OMMO [33]. Numerical
results are provided in the appendix.

Ours Ours Ours 3DGS [24] MCMC [25] MCMC [25]

10k iters 20k iters 40k iters EDGS [27] (SfM init.)  (rand. init.) (SfM init.)

PSNR 29.33 29.37 29.37 29.18 2871 28.98 29.23
SSIM 1 0.877 0.880 0.881 0.877 0.846 0.865 0.875
LPIPS | 0.171 0.168 0.166 0.168 0.222 0.204 0.190
FPS 134 137 137 131 112 92 95
3DGS time | 20.7 20.5 20.5 19.4 22.6 26.3 25.1
Init. time | 1.6 3.1 6.1 23 - - -
Overall time | 223 23.6 26.6 21.7 22.6 26.3 25.1

Table 2. Quantitative results averaged over Mip-NeRF360 [3]
showing reconstruction timings for 3DGS [24], MCMC [25],
EDGS [27], and our method (with varying iNGP durations),
capped at 1M Gaussians. 3DGS time reports target scene opti-
mization and densification, while init. time shows iNGP recon-
struction for our method and initial matching for EDGS [27].

5.2. Ablations

We analyze each component’s impact through ablation stud-
ies in Table °. (a), (b) Longer iNGP reconstruction only
slightly improves reconstruction quality. (c¢) continuing
training the iNGP model also during optimization, (d) ini-
tializing Gaussians with the ground truth pixel color, or
(e) predicting spherical harmonics with iNGP, leads to
marginally worse results. Demonstrating the strength of
our densification method, using (f) pixel-cone-sized prim-
itives during initialization, or even not using any initializa-
tion (g), results in worse PSNR but maintains low LPIPS
and considerably improves rendering speed, thanks to less
overlap between primitives, reducing blending. (h) Sam-
pling pixels uniformly instead of guiding Gaussian creation
using the L; loss from the training set produces lower re-
construction quality, although due to uniform sampling in
image space still focusing more on parts of the scene seen
most across views, the drop is not drastic. Densifying with

Ablation ‘ PSNRt SSIMt LPIPS| FPS1
Ours ‘ 27.74 0.810 0.285 328
(a) 10k iNGP iter. 27.74 0.808 0.287 313
(b) 40k iNGP iter. 27.72 0.811 0.284 333
(c) Train iNGP during 3DGS 27.73 0.809 0.285 310
(d) Color from GT image 27.73 0.807 0.287 320
(e) Prediction of SH with iNGP 27.74 0.805 0.290 320
(f) Cone-sized initialization 27.38 0.806 0.287 437
(g) Without initialization 27.46 0.811 0.285 415
(h) Uniform image-space sampling 27.51 0.806 0.286 307
(i) Densify with 3DGS depth 2743 0.797 0.296 332
(j) SfM initialization + 3DGS depth dens. 27.15 0.790 0.302 329
(k) Densify with k-NN scaling 27.54 0.802 0.295 299
(1) No opacity penalty 27.31 0.794 0.301 294
(m) Post-densification opacity decrease [5] 27.46 0.798 0.297 256
(n) MCMC-style opacity penalty [25] 27.49 0.803 0.293 239
(0) Ascate =1 27.70 0.810 0.285 329
(P) Ascale = 4 27.63 0.808 0.285 329

Table 3. Ablation study of our method with 100k Gaussians, av-
eraged over the Mip-NeRF360 [3] dataset. We highlight the best,
second best, and third best results.

3DGS depth (i), also without using iNGP even for initializa-
tion (j), strongly affects the results. Similarly, k-NN sizing
of newly added primitives based on their closest neighbors
(k), or changing the opacity penalty (1), (m), (n), has a large
effect on reconstruction quality, reinforcing the benefits of
our densification approach. (o), (p) Altering Gaussian sizes
from their default pixel-width cone size during densification
slightly reduces quality, yet the small difference suggests
Gaussians quickly resize to fit the scene.

6. Conclusion

We introduce ConeGS, a reconstruction pipeline replacing
cloning-based densification with a method guided by photo-
metric error and a coarse iNGP proxy, where new primitives
are sized by pixel cones. Together with an improved opacity
penalty, this allows creating primitives independently of ex-
isting structures through more flexible exploration. ConeGS
consistently improves reconstruction quality and rendering
performance across Gaussian budgets, with strong gains un-
der tight primitive constraints. It achieves up to 0.6 PSNR
increase and 20% speedup over cloning-based baselines.

Limitations: ConeGS performs well on standard scenes
but may struggle with large-scale environments, inaccu-
rate poses, or sparse views, occasionally creating floaters
(see appendix). Benefits are also reduced at high Gaussian
budgets, where dense coverage limits the impact of error-
guided placement, primarily offering faster rendering.
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Appendix

This appendix introduces additional results (Section /. !)
and ablations (Section /). We then discuss our recon-
structed scene structure (Section /. ), possible failure cases
(Section ), and provide visualizations for the different
types of initializations mentioned in the main paper (Sec-
tion /. °). Finally, we discuss the parallels between 3DGS
and NeRF rendering, which allows training a radiance field
using the rendering from 3DGS (Section /. 0).

Al. Detailed results

Table and Table present results for the no-budget
scenario, which were used for plots in Figure ©. We use var-
ious values of the 3 parameter without specifying a budget
for our method, except for the last cell, which uses the bud-
get set by the number of Gaussians generated by 3D Gaus-
sian Splatting. For each cell, we also compare MCMC [25]
and EDGS [27] where they are set to match the number of
Gaussians produced in each of the cells. The comparisons
show that our method is able to produce high-quality re-
sults even without specifying a budget, instead adjusting
the number of primitives based on the scene complexity,
while still remaining sparse in the number of primitives.
Notably, even when setting 5 = 0, which effectively dis-
ables densification, our method still performs well due to
a dense initialization and effective filtering of unnecessary
primitives enforced by the opacity penalty, consistent with

Ablation | PSNRT SSIM+ LPIPS| FPST #Gaussians
Ours (5 = 0) 29.12 0.873 0.183 185
MCMC (SfM) 28.86 0.865 0.209 136 542k
EDGS 28.87 0.868 0.187 194
Ours (8 =0.01) | 2925 0877 0.174 169
MCMC (SftM) 29.06 0.870 0.199 119 674k
EDGS 28.97 0.873 0.178 167
Ours (5 = 0.02) 29.34 0.880 0.166 146
MCMC (SftM) 29.15 0.876 0.189 101 942k
EDGS 29.10 0.878 0.167 134
Ours (5 = 0.04) 29.38 0.881 0.161 105
MCMC (SftM) 29.32 0.882 0.174 77 1.66M
EDGS 29.19 0.881 0.159 102
Ours 29.35 0.879 0.159 80
MCMC (SftM) 29.56 0.887 0.164 55 2.57M
EDGS 29.37 0.884 0.153 67 i
3DGS 29.03 0.870 0.184 69

Table Al. No-budget Mip-NeRF360. Comparison of recon-

struction quality without a fixed limit on the number of primi-
tives. For each cell, our method is run with a different 3 parame-
ter, which determines the number of Gaussians generated, and the
other methods are limited to this number. In the last cell, the num-
ber of Gaussians is set to match the amount produced by 3DGS,
with all other methods constrained accordingly. Results are aver-
aged over the Mip-NeRF360 [3] dataset.

12

Ablation ‘ PSNRT SSIM?T LPIPS| FPST # Gaussians
Ours (8 = 0) 28.54 0.879 0.195 253

MCMC (SfM) 28.37 0.877 0.207 199 352k
EDGS 28.62 0.885 0.183 219

Ours (8 =0.01) | 29.02 0.890 0.176 237

MCMC (SfM) 28.55 0.882 0.199 175 438k
EDGS 28.84 0.890 0.173 211

Ours (8 =0.02) | 29.19 0.894 0.166 217

MCMC (SfM) 28.79 0.888 0.190 157 581k
EDGS 29.07 0.896 0.163 188

Ours (8 =0.04) | 29.32 0.898 0.157 116

MCMC (SfM) 29.05 0.895 0.177 105 927k
EDGS 29.35 0.902 0.151 134

Ours 29.60 0.904 0.144 114

MCMC 29.46 0.904 0.157 89 175M
EDGS 29.85 0.909 0.137 99 ’
3DGS 29.30 0.896 0.171 88

Table A2. No-budget OMMO. Comparison of reconstruction
quality without a fixed limit on the number of primitives. For each
cell, our method is run with a different 5 parameter, which deter-
mines the number of Gaussians generated, and the other methods
are limited to this number. In the last cell, the number of Gaus-
sians is set to match the amount produced by 3DGS, with all other
methods constrained accordingly. Results are averaged over the
OMMO [33] dataset.

Mini-Splatting2 [11]

Figure Al.
and Mini-Splatting2 [11] on the garden scene from Mip-
NeRF360 [3] and on the train scene from Tanks & Temples
[26].

Qualitative comparison between our approach

findings in [27]. However, this configuration does not al-
low explicit control over the number of primitives and may
limit the achievable reconstruction quality.

If an even lower number of Gaussians is desired while
still using a no-budget scenario, the number of initialized
Gaussians can be reduced, effectively lowering the number
of primitives generated at the end.

We show in Table the results on the selected bench-
marks for the budget of 1M primitives. Additionally, we
present per-scene results for 100k Gaussians in Table ",



Mip-NeRF360 [3] OMMO [33] Tanks & Temples [26] DeepBlending [19]
PSNR1 SSIMt LPIPS| | PSNRT SSIM{1 LPIPS| | PSNRT SSIM1 LPIPS| | PSNRT SSIM?T LPIPS |
Number of Gaussians limited to 1M
3DGS [24] (SfM init.) 28.71 0.846 0.222 29.40 0.894 0.178 23.60 0.826 0.245 28.93 0.881 0.292
Foroutan et al. [14] 29.22 0.876 0.177 29.32 0.896 0.163 23.75 0.829 0.230 29.60 0.886 0.282
MCMC [25] (rand. init.) 28.98 0.865 0.204 28.83 0.888 0.185 23.41 0.824 0.249 28.94 0.877 0.303
MCMC [25] (SfM init.) 29.23 0.875 0.190 29.18 0.895 0.174 23.93 0.836 0.233 29.67 0.887 0.288
MCMC [25] (iNGP init.) 29.32 0.879 0.173 28.76 0.887 0.181 23.37 0.804 0.268 29.87 0.892 0.276
GaussianPro [9] 28.56 0.845 0.226 28.79 0.885 0.189 23.01 0.818 0.256 29.27 0.887 0.291
Perceptual-GS [64] 29.27 0.876 0.176 29.00 0.888 0.179 23.26 0.828 0.240 29.41 0.889 0.286
EDGS [27] 29.18 0.877 0.168 29.58 0.903 0.149 23.66 0.842 0.200 29.43 0.889 0.271
Ours 29.37 0.880 0.168 29.44 0.899 0.154 23.70 0.835 0.207 29.69 0.889 0.273

T Original code was not publicly available. Our implementation uses iNGP initialization and does not include the additional depth-based loss.

Table A3. Quantitative results with a Gaussian number limit of 1M. We highlight the best, second best and third best results among

methods with comparable numbers of Gaussians.

| Ours
#Memory (MiB) | 9545

3DGS (SfM)
9049

MCMC (SfM)
8671

EDGS Perceptual-GS
14517 12403

Table A4. Peak GPU memory usage on the 15 scene from the
OMMO dataset [33] on the maximum budget of 500k primitives.
We highlight the best, second best and third best results among
all.

| PSNRT SSIMT LPIPS| FPSt Train (min)|

29.14 0.892 0.170 217 25
29.27 0.893 0.168 212 29

ConeGS
ConeGS (iNGP retrain)

Table AS. Ablation on additional iNGP training on the
OMMO [33] dataset with 500k primitives, evaluating the effect of
continuing training iNGP in parallel with the full 3DGS optimiza-
tion. We highlight the best, second best and third best results
among all.

500k Gaussians in Table ', 1M Gaussians in Table s
and 2M Gaussians in Table . We also show additional
qualitative results with Mini-Splatting2 [11] in Figure

A2. Additional ablations and comparisons

We evaluate the peak GPU memory usage during optimiza-
tion for several methods in Table /. The results show that
our method is very close to 3DGS [24] and MCMC [25] in
terms of memory consumption, while remaining consider-
ably lower than EDGS [27] and Perceptual-GS [64]. This
efficiency allows our method to run on a wider range of
GPUs, making it more accessible to devices with limited
memory.

We expand on ablation (c¢) from the main paper, where
iNGP continues training in parallel with the full 3DGS opti-
mization. Since iNGP training, like densification, is guided
by the L1 error from 3DGS, the iNGP model can better fo-
cus on regions where 3DGS reconstruction may fall short,
potentially improving densification. The original ablation
was tested on a budget of 100k primitives, which may not

13

Set budget (100k)

10° 5 1004 +

Unset budget (3 = 0.04)
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—— Pruned =--- Added —-- Accumulated

Figure A2. Number of primitives pruned, added, accumulated,
as well as the total number, during each densification, on different
budget scenarios. Results obtained from the garden scene from
Mip-NeRF360 [3].

fully reveal this effect. To explore further, we run exper-
iments with larger budgets. On the 500k budget for chal-
lenging OMMO [33] scenes (Table " °), we observe addi-
tional performance gains, though at the cost of longer train-
ing time. We also test this setup with a budget of 1M prim-
itives across all datasets (Table /), finding minimal im-
provements on difficult scenes and slight decreases on Mip-
NeRF360, which may be caused by overfitting to certain
areas.

Figure /'  illustrates the number of primitives added and
removed during each densification and pruning step. It also
tracks the accumulation buffer of primitives. When no bud-
get is specified, all accumulated primitives are added to the
scene (see Eq. | /). Under a fixed budget, however, not all
of them are used. This is because accumulation happens
every iteration and must remain available for pruning and



Mip-NeRF360 [3] OMMO [33]
PSNR1 SSIM1 LPIPS| | PSNR{ SSIM{ LPIPS |

Tanks & Temples [26]
PSNR1 SSIMT LPIPS|

DeepBlending [19]
PSNR 1 SSIMt LPIPS |

Number of Gaussians limited to 1M

29.37
29.25

0.880
0.879

0.168
0.168

29.44
29.54

Ours
Ours, iNGP training during 3DGS

0.899
0.900

0.154
0.152

23.70
23.72

0.835
0.836

0.207
0.207

29.69
29.73

0.889
0.889

0.273
0.273

Table A6. Ablation on additional iNGP training for the budget of 1M primitives. We highlight the best, second best and third best

results among methods with comparable numbers of Gaussians.
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Figure A3. The histogram of perceived image-space size of
pixel-sized Gaussians rendered from different viewpoints. Size
expressed in pixel widths. Analysis doesn’t include the low-pass
filter from 3DGS rasterization.

‘ Ours MCMC (SfM)

49.55

MCMC 3DGS (SfM)
48.45 34.74

# Gaussians per pixel ‘ 30.72

Table A7. Blending analysis. Mean number of Gaussians con-
tributing to alpha blending per pixel, averaged across the Mip-
NeRF360 [3] dataset using a budget of 1M Gaussians. We high-
light the best, second best and third best results among all.

densification, while the exact number that can be added is
unknown beforehand. As a result, the system accumulates
more primitives than are usually required to keep the total
count close to the budget after pruning (see Eq. | 0).

The primitive size is defined to be approximately one
pixel from a single viewpoint. From other viewpoints, this
size is not exactly one pixel, but should remain close. To
confirm this, we measure the size of newly added pixel-
sized primitives from multiple viewpoints and report the re-
sults in Figure /. . The distribution shows that the apparent
size remains near one pixel, with very few cases above four
pixels or below 0.2 pixels.

A3. Scene structure

To confirm that our method produces reconstructions with
desirable characteristics, such as a balanced distribution
of scaling values and placement close to surfaces, which
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Ours MCMC

T 'I T I_

1077 107° 10! 10° 1077 1073 10! 10°
Scale Scale

Figure A4. Histograms of the Gaussian scaling values for our
method and MCMC with SfM initialization on 2M Gaussians. The
red lines indicate the minimum scaling required for a Gaussian to
cover at least one pixel, disregarding the low-pass filter.

MCMC

Ours

Figure A5. Shrunk Gaussians. Visual comparison between the
proposed method and MCMC, rendered using Gaussians scaled to
half their original size. Both methods were trained with a limit of
1 million primitives on the bicycle and bonsai scenes from
Mip-NeRF360 [3], and the 10 scene from OMMO [33].

are often important for downstream tasks, we analyze
the scenes created with our method in comparison to
MCMC [25].

Although Gaussian Splatting with the MCMC densifica-



tion strategy explores the scene effectively, it also has clear
shortcomings. Its cloning strategy and scaling penalty of-
ten cause Gaussians to shrink strongly along certain dimen-
sions. The low-pass filter used by 3DGS renderer can hide
this effect visually, but it prevents Gaussians from expand-
ing in those directions and interferes with tasks that depend
on accurate scales, such as MCMC position error. As shown
in Figure /. -/, many of its Gaussians shrink below the pixel
radius, in contrast to the more balanced distribution pro-
duced by our method.

Figure shows that our approach produces Gaussians
that are more uniform in size and placed closer to object sur-
faces. This avoids an overreliance on oversized background
primitives located far from the surface. This primitive dis-
tribution not only improves geometric alignment but also
increases rendering speed by reducing blending and sorting
overhead during rasterization. To support this hypothesis,
Table reports the mean number of Gaussians blended
per pixel. Our method consistently requires less blending
compared to the selected benchmarks. The difference is es-
pecially large compared to MCMC, which blends over 60%
more Gaussians per pixel on average.

Ad4. Failure cases

While our method generally produces strong reconstruc-
tions on almost all tested scenes, its reliance on iNGP can
make it susceptible to floaters in challenging scenarios such
as noisy poses, very large or sparse-view scenes, or other
cases where reliable iNGP reconstruction is difficult. One
such example is shown in Figure /¢, where the scene con-
tains distortions and lacks sufficient viewpoint coverage
near the cameras. This leads to spurious high-density re-
gions in iNGP close to the cameras, which in turn degrades
densification quality by placing Gaussians in incorrect re-
gions. Although this can reduce performance, the method
still produces high-quality reconstructions overall (see per-
scene results).

AS. Initialization visualizations

The choice of initialization has a strong impact on the per-
formance of 3DGS reconstruction. A sufficiently good ini-
tialization can even remove the need for additional densi-
fication ([27], Table /. |, Table /). We visualize different
initialization types in Figure /' /. Initialization from a sparse
StM point cloud often leaves large gaps that are difficult to
fill correctly, while our initialization produces a more uni-
form coverage. Another important strategy is initialization
based on pixel width. This approach does not provide a use-
ful inductive bias of larger primitives and can lead to more
gaps in unobserved regions, although it may offer faster ren-
dering due to reduced blending (Section - ). Finally, our
formulation allows scaling the initial primitives in image
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Figure A6. Depth maps. Depth maps for ConeGS and the
iNGP reconstruction model on the 01 scene from the OMMO [33]
dataset. Since the Gaussians are generated from an iNGP recon-
struction, the presence of floaters in it leads to floaters also appear-
ing in the Gaussian Splatting results.

SfM point cloud init. Our init.

1x pixel size init.

Figure A7. Initialization Methods Comparison. Visual compar-
ison of four initialization methods for 3DGS reconstruction on the
bicycle scene from Mip-NeRF 360 dataset [3]: (1) SfM point
cloud initialization, (2) iNGP initialization with kKNN-based sizing,
(3) iNGP initialization with 1x sizing, and (4) iNGP initialization
using the smaller of 10x pixel size or kKNN-based sizing.

space, producing a balance between these two types of ini-
tialization.

A6. Gaussian-Based Radiance Field training

To establish a more direct connection between the volu-
metric ray marching procedure in Neural Radiance Fields
(NeRF) and the rendering in 3D Gaussian Splatting
(3DGS), the set of conical frustums sampled along a cone
in Mip-NeRF and its derivatives [2—4] can be reinterpreted
as a set of 3D Gaussian primitives, covering approximately
the same area. The purpose of this reformulation is to en-
able training a neural radiance field model using only the
3DGS renderer, without using the traditional volumetric ray
integration.



Gaussian Splatting Volumetric rendering

; s

Equivalent
rendering

Figure A8. Training equivalence. Illustration of the equivalence
between training an implicit radiance field model using NeRF-
style ray marching and 3D Gaussian Splatting rasterization.

To align the 3DGS and NeRF rendering formulations, it
is necessary to demonstrate that an entire ray can be equiv-
alently represented as a sequence of Gaussians such that,
when rendered, the result is equal to the volumetric integra-
tion process. This is achieved by casting cones along pixel
directions and subdividing each into a set of conical frus-
tums. Each frustum is then mapped to a Gaussian primitive,
where the midpoint

t; +t;
tpi = % (A1)
is used to define the Gaussian center p;. The view-

dependent RGB color c; and scalar density o;, which is
converted to opacity o; using Eq. ©, are predicted by a
neural network. As detailed in Section , the predicted
RGB color c; is encoded as spherical harmonics coeffi-
cients, which are compatible with the 3DGS rasterizer.

Since the Gaussians lie along the cone and their cen-
ters are co-linear with the pixel center and the camera ori-
gin, their projected 2D means fall directly on the target
pixel. Consequently, the maximum opacity contribution
aligns with the pixel center, and the kernel evaluation sat-
isfies

K(pe, >, 57°) = 1. (A2)

This condition ensures that the Gaussian opacity o; corre-
sponds directly to the opacity «; used in blending opera-
tions, as defined in Eq. © and Eq. . The opacity is therefore
determined by the predicted density and the length of the
corresponding frustum.

To maintain consistent 2D projection footprints across
different depths, each Gaussian’s 3D covariance must be
adjusted based on its location along the cone. Because elon-
gating Gaussians along the ray direction does not affect the
resulting 2D projection, the scaling can be derived using the
pixel footprint size and set isotropically using the formula-
tion in Eq. |, while the quaternion can be set to the identity
quaternion.

Given these assignments for position, color, opacity,
scale, and orientation, each Gaussian can be rendered us-
ing the 3DGS renderer to produce the same pixel color as
that produced by volumetric rendering. Assuming no low-
pass filtering is applied and that only a single image is ren-
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dered at a time, it becomes possible to train an Instant-NGP-
style model using only the 3DGS rendering pipeline. Al-
though this approach is marginally slower than traditional
ray marching, it yields equivalent radiance field representa-
tions. A visual comparison of both approaches is shown in
Figure

This reinterpretation also provides a more principled
foundation for the proposed densification strategy. Instead
of using depth, the strategy can be understood as selecting
a Gaussian that corresponds to a surface-level conical frus-
tum of pixels with high photometric error. This establishes
a clearer theoretical link between cone-based densification
and neural implicit models such as NeRF.



Scene

Ours

3DGS (SfM)

MCMC (SfM)

EDGS

24.05 /0.652 / 0.379 / 368
24.69 / 0.709 / 0.336 / 431
25.71 /0.707 7 0.351 / 456
31.09 / 0.903 / 0.254 / 275
2822/ 0.879 /0.251 / 229
29.73 /10.896 / 0.183 / 239
30.67 /10.920 / 0.241 /276
27.74 1 0.809 / 0.285 / 325

20.99/0.470/0.543 / 466
22.87/0.589/0.445 / 430
22.79/0.547/0.498 / 506
27.02/0.859/0.328 / 267
25.64/0.845/0.307 / 252
20.53/0.671/0.440/ 297
25.41/0.866/0.331/ 326
23.61/0.692/0.413/ 363

23.34 / 0.630 / 0.400 /339
24.51 /0.710 / 0.350 /569
25.16 / 0.680 / 0.370 / 402
30.37 / 0.900 / 0.270 / 224
27.83 /10.880 / 0.260 / 198
28.37 /1 0.890 / 0.210 / 246
29.84 /0.910 / 0.260 / 281
27.06 / 0.800 / 0.303 /323

23.68 / 0.635 / 0.393 / 444
24.47 1 0.706 / 0.341 / 493
25.08 / 0.673 /1 0.377 / 588
30.08 / 0.896 / 0.265 /317
27.77 1 0.877 /1 0.251 / 245
28.84 /0.891 / 0.186 / 269
29.73 / 0.906 / 0.256 / 298
27.09 / 0.798 / 0.296 / 379

22.58 /0.625 / 0.458 / 212
25.39/0.842 / 0.244 / 356
27.95 7/ 0.863 / 0.246 / 415
27.30/0.913 7 0.202 / 321
29.31 /0.853 /0.252 / 338
30.36 / 0.899 / 0.211 / 449
29.73 /10.924 / 0.145 / 394
28.10 /0.893 7/ 0.182 / 405
27.59 /1 0.852 /1 0.242 / 361

20.53/0.543/0.575 /159
24.09/0.803/0.295/112
26.87/0.841/0.296 / 354
26.53 /0.899/0.229 /107
28.86 /0.833/0.291/ 125
29.79 1 0.889 / 0.247 / 171
27.09/0.874/0.220 /237
27.80/0.877 / 0.213 / 153
26.45/0.820/0.296 / 177

22.66 / 0.620 / 0.470 / 180
24.30 / 0.810 /7 0.290 / 217
27.70 / 0.860 / 0.270 /318
26.25/0.910 / 0.210 / 339
28.70/ 0.840 / 0.280 / 337
29.45 / 0.880 /0.250 / 378
29.26 / 0.920 / 0.160 / 360
27.72 /1 0.890 / 0.200 / 427
27.00 / 0.841 / 0.266 / 320

2250/ 0.608 / 0.475 /222
24.85/0.827 / 0.259 / 313
27.69 / 0.856 / 0.259 / 398
26.60 / 0.910 / 0.198 / 339
28.78 1 0.839 / 0.275 / 341
28.98/0.878/0.234 / 468
28.92 /0.909 / 0.169 / 374
27.58/0.877 /0.215 / 420
26.99 / 0.838 7 0.261 / 359

24.54 /0.822 / 0.291 / 184
21.70 / 0.759 / 0.328 / 204
23.12/0.790 / 0.309 / 194

23.59/0.803 /0.318 /128
21.17 /0.74470.349/ 118
22.38 /0.774/0.334 /123

23.86 /0.810 / 0.316 / 155
21.13/0.749 / 0.347 / 160
22.49 /0.780 / 0.332 / 158

23.33/0.799/ 0.314 / 183
21.31/0.756 / 0.334 / 180
22.32/0.778 1 0.324 / 182

28.78 /1 0.875 / 0.338 / 447

30.09 / 0.885 /0.318 / 489
29.44 /0.880 / 0.328 / 468

23.58/0.808 /0.440/ 521

25.72/0.845/0.384 / 489
24.65/0.827/0.412 / 505

28.16 / 0.869 / 0.343 /550

29.72 1 0.883 / 0.323 /552
28.94 /1 0.876 / 0.333 / 551

27.66 / 0.865 / 0.347 / 444

29.19 /1 0.879 / 0.327 / 486
28.43 / 0.872 / 0.337 / 465

Bicycle
@ Garden
@  Stump
= Room
§ Counter
& Kitchen
S Bonsai
Average
01
03
= 05
=06
g
S 13
© 14
15
Average
»&  Truck
£4  Train
& Average
S Dr John-
gEa son
2%  Playroom
= Average
Table AS.

the main table are due to rounding.

Detailed results on a selection of datasets and methods with the number of Gaussians limited to 100k. Each field contains
PSNR, SSIM, LPIPS and FPS respectively. We highlight the best, second best and third best results among all. Slight discrepancies from

Scene

Ours

3DGS (SfM)

MCMC (SftM)

EDGS

Bicycle
Garden
Stump
Room
Counter
Kitchen
Bonsai
Average

Mip-NeRF360 [3]

25.25/0.758 /1 0.242 / 234
26.87 /0.837 /0.157 / 246
27.03 /0.793 / 0.215 / 255
32.02 /0.924 / 0.205 /192
28.87 /1 0.906 / 0.194 /148
31.38/0.929 / 0.124 / 172
32.16 /0.944 / 0.191 / 190
29.08 / 0.870 / 0.190 / 205

24.06/0.651/0.370/ 174
25.16/0.743 1 0.296 / 297
25.27/0.688/0.348 / 226
31.47 /0.913/0.234/ 112
28.86/0.901/0.213/ 113
30.76/0.918/0.143 / 111
31.95/0.936/0.218 / 135
28.22/0.821/0.260/ 167

24.90 / 0.740 / 0.282 / 162
26.36 / 0.823 / 0.189 /221
26.81 /0.779 / 0.250 / 175
31.72 /0921 /0221 / 114
28.95 /0.907 / 0.205 /93
31.04 /09217 0.141 / 111
31.97 /0.939 / 0.210 / 128
28.82/0.861 / 0.214 /143

24.95 /1 0.751 / 0.251 / 248
26.49 / 0.833 / 0.161 / 252
26.50 / 0.768 / 0.237 / 296
31.36/0.923 /0.203 / 168
29.05 /0912 / 0.184 / 137
31.35/0.928 / 0.122 / 154
32.02/0.942 / 0.191 / 170
28.82 / 0.865 / 0.193 / 204

01
03
05
06
10
13
14
15
Average

OMMO [33]

23.46 /10.690 / 0.356 / 140
27.01 / 0.887 / 0.181 /197
28.61 /0.877 / 0.199 /1232
27.79 / 0.932 / 0.159 /195
31.16 / 0.905 / 0.165 / 235
33.02 /0.949 / 0.115 / 280
31.57 /0.950 / 0.096 / 225
30.50 /10.944 /0.090 / 231
29.14 / 0.892 / 0.170 / 217

23.81/0.682/0.385/ 102
26.18/0.868/0.220/ 111
28.53/0.874/0.235/ 162
27.59/0.931/0.161/ 120
31.04 /0.894 /0.194 / 143
32.40/0.939 / 0.149 / 165
31.57 /1 0.946 / 0.107 / 135
30.59/0.934 /0.114/ 149
28.96 /0.884/0.196 / 136

23.73 7/ 0.685 / 0.378 / 90
26.50 / 0.875 / 0.212 / 105
28.71 / 0.877 / 0.233 / 154
26.99/0.934 / 0.159 / 152
30.56/0.892/0.192 / 168
32.18 /0.934/0.155/ 175
31.14 7 0.946 /0.108 / 130
29.92/0.933/0.113 / 162
28.72/0.885 / 0.194 / 142

23.63 / 0.686 / 0.363 / 84
27.16 / 0.892 /0.176 / 93
28.79 /0.881 / 0.196 / 122
27.38 /10.941 /10.135 / 105
31.11 /10.906 / 0.165 / 129
31.95/0.944 / 0.123 / 151
31.51/0.950 /0.095 / 112
30.52 7/ 0.942 / 0.095 /125
29.01 /0.893 / 0.169 / 115

Truck
Train
Average

Tanks &
Temples [26]

25.41/0.858 /0.204 / 122
21.97/0.799 / 0.253 / 140
23.69 / 0.829 / 0.229 / 131

24.80 /0.842/0.253/ 93
22.28 /0.790/0.277 /72
23.54/0.816/0.265 / 82

25.24 /1 0.851 / 0.242 / 68
22.12/0.798 /1 0.275 / 86
23.68 / 0.825/ 0.259 /77

24.66/0.850 /0.212 / 114
2227 /0.812 / 0.246 / 104
23.47/0.831 /0.229 / 109

Dr John-
son
Playroom
Average

Deep
Blending [19]

29.20 / 0.890 / 0.291 / 270

30.51 /0.892 / 0.279 / 287
29.86 / 0.891 / 0.285 / 278

28.85/0.881/0.307 /151

29.66/0.883/0.298 / 161
29.26/0.882/0.303 / 156

28.71/0.884 /0.313/ 180

30.16 / 0.889 /0.303 / 209
29.44 /1 0.887 /0.308 / 194

28.60/ 0.888 / 0.292 / 269

30.06 / 0.890 / 0.281 / 277
29.33 /.0.889 / 0.287 / 273

Table A9.

the main table are due to rounding.
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Detailed results on a selection of datasets and methods with the number of Gaussians limited to 500k. Each field contains
PSNR, SSIM, LPIPS and FPS respectively. We highlight the best, second best and third best results among all. Slight discrepancies from



Scene

Ours

3DGS (SfM)

MCMC (SfM)

EDGS

25.45/0.778 / 0.198 / 156
27.42/0.861 /0.115 / 162
27.23 /0.802 /0.184 / 164
32.30 /10.928 / 0.196 /139
29.21 /0911 /0.181 /1107
31.66 / 0.932 /0.117 /118
32.33/0.945 / 0.183 /132
29.37 / 0.880 / 0.168 / 140

24.40/0.688/0.325/ 129
26.70/0.827/0.172/ 142
25.64/0.719/0.301/ 162
31.62/0.918/0.221/ 82
29.11/0.907/0.201/ 75
31.18/0.924/0.131/ 78
32.34/0.941/0.205/ 95
28.71/0.846/0.222 / 109

25.34 / 0.768 / 0.238 / 106
26.83 / 0.847 / 0.147 / 135
27.21/0.798 / 0.213 / 110
32.09 / 0.926 / 0.208 /79
29.24 /0.913 7/ 0.191 / 61
31.447/0.927 / 0.130 /72
32.46 / 0.944 / 0.199 / 81
29.23/0.875/70.189 /92

2526 /0.778 / 0.199 / 161
27.05/0.857 /0.118 / 158
26.71 / 0.783 7 0.203 / 179
31.71/0.928 / 0.191 / 111
29.27 /0.917 / 0.171 / 94
31.83 /0.933 /0.114 / 101
32.44 /0.947 / 0.181 / 115
29.18 /0.878 /0.168 / 131

23.73/0.711 / 0.315 / 104
27.39 /1 0.896 / 0.167 /127
28.56/0.877 / 0.185 /1157
27.87/0.936 / 0.150 / 136
31.60 / 0.914 / 0.147 /170
33.55/0.957 / 0.098 / 190
31.80 / 0.953 / 0.090 / 146
30.99 /10.950 / 0.081 /151
29.44 7 0.899 / 0.154 /148

24.18 /0.703/0.350 / 73
26.96/0.886/0.197 / 64
28.72 /1 0.877 /0.227 / 115
27.68 /0.933/0.158/ 110
31.47 7/ 0.906 /0.171 /104
33.13/0.949/0.129 / 116
31.93 /0.951 7/ 0.097 /89
31.13 7/ 0.943 / 0.096 / 100
29.40 /0.894/0.178 / 96

24.18 / 0.709 / 0.341 / 63
27.20 / 0.890 / 0.189 / 67
28.98 / 0.883 / 0.217 /98
27.46/0.939 / 0.146 / 103
30.89/0.904/0.169 / 120
32.83/0.945/0.131/ 124
31.44/0.950/0.099 / 96
30.42/0.942/0.097 / 104
29.18/0.895 / 0.174 / 97

24.02 /0.709 / 0.321 / 84
27.72 /0.905 / 0.157 / 85
29.15 /10.885 /0.181 / 101
27.75 10.945 / 0.127 / 102
31.82/0.920/0.138 / 116
32.83/0.955/0.100 / 125
32.08 /10.955 /0.086 / 92
31.25/0.950 / 0.079 / 104
29.58 /10.903 / 0.149 / 101

25.34 /0.864 / 0.181 / 97
22.05/0.805 / 0.232 /1109
23.70 / 0.835 / 0.207 /103

25.06 /0.851/0.234/ 70
22.13 /0.801/0.255/ 51
23.60/0.826/0.245 / 60

25.57 /1 0.862 / 0.217 /45
2229/ 0.811 /0.249 / 47
23.93/0.837/0.233 /46

25.02/0.862 /10.181 / 82
22.29 /0.823 /0.220 / 78
23.66 /10.843 /0.201 / 80

Bicycle
@ Garden
@  Stump
= Room
§ Counter
& Kitchen
S Bonsai
Average
01
03
= 05
=06
g 0
S 13
© 14
15
Average
»&  Truck
£4  Train
& Average
S Dr John-
gEa son
2%  Playroom
= Average

28.98 / 0.886 / 0.282 /1194

30.39 / 0.891 / 0.264 / 200
29.69 / 0.889 / 0.273 /197

28.85/0.884 /0.293 / 106

29.02/0.877/0.290 /112
28.94/0.881/0.292 /109

29.06 / 0.884 / 0.291 / 164

30.28 / 0.890 / 0.284 / 173
29.67 / 0.887 / 0.288 / 168

28.75/10.890 / 0.277 / 180

30.11 7/ 0.889 / 0.265 / 182
29.43 /10.890 / 0.271 / 181

Table A10. Detailed results on a selection of datasets and methods with the number of Gaussians limited to 1M. Each field contains PSNR,
SSIM, LPIPS and FPS respectively. We highlight the best, second best and third best results among all.

main table are due to rounding.

Slight discrepancies from the

Ours

3DGS (SfM)

MCMC (SftM)

EDGS

25.43/0.781 / 0.175 / 99
27.59 /0.870 / 0.097 / 97
27.03 /0.796 / 0.177 / 100
32.32/0.929 /0.189 / 92
29.23/0.912 /0.175 /70
31.80/0.934/0.114 / 72
32.63 /0.948 / 0.177 / 84
29.43 / 0.881 /0.158 /88

24.85/0.729/0.267/ 79
27.22/0.852/0.129/ 84
26.18/0.749 / 0.255 / 100
31.80/0.919/0.218 / 63
29.07/0.907/0.201 / 68
31.60/0.927/0.126 / 54
32.34/0.941/0.204 / 84
29.01/0.861/0.200/ 76

25.56 / 0.786 / 0.205 /71
27.33/0.862 /0.122 / 82
27.39 /0.808 / 0.189 / 69
32.14/0.929 / 0.199 / 53
29.41/0.917 / 0.181 /42
32.00 7/ 0.931 /0.122 / 47
32.80 /0.948 / 0.189 /53
29.52 /0.883 / 0.172 / 60

25.48 /10.792 / 0.168 / 93
27.46 /0.870 / 0.097 / 89
26.79 / 0.788 / 0.186 / 100
31.89/10.930 /0.184 / 81
29.37 /10.918 / 0.164 / 65
32.06 /0.935 /0.111 / 65
32.62/0.947 / 0.175 / 85
29.38 /10.883 /0.155 / 83

23.92/0.725 /10.283 /73
27.73 /1 0.902 / 0.155 / 70
28.65/0.877 / 0.176 / 91
27.93 /0.937/0.143 / 79
31.81/0.920 / 0.135 /1104
33.88 /0.961 / 0.088 /112
32.02 / 0.955 / 0.086 / 83
31.25/0.953 / 0.075 / 86
29.65 / 0.904 / 0.143 / 87

24.51/0.721/0.321/ 49
27.05/0.888/0.193 / 47
28.69 / 0.877 /0.227 / 112
27.67 /0.933/0.157 / 109
31.77 / 0.915 /0.153 /70
33.79 /0.957 /0.112 /73
31.95/0.951/0.096 / 82
31.35/0.947 /0.090/ 83
29.60 /0.899/0.169/ 78

24.51 /0.731 / 0.303 / 45
27.73 1 0.900 / 0.171 / 45
29.20 / 0.887 / 0.201 / 67
27.58/0.942 / 0.138 / 63
31.59/0.913/0.151 / 80
33.30/0.953/0.111 / 80
31.75/ 0.953 / 0.093 / 62
30.80/ 0.947 / 0.086 / 67
29.56/0.903 / 0.157 / 64

24.24 1 0.725 /1 0.285 / 64
27.77 / 0.909 / 0.149 / 82
29.31 /10.887 /0.169 / 90
27.93 /0.947 /0.123 / 97
32.26 /0.928 / 0.123 / 89
33.55 /10.961 /0.087 / 90
31.76 /10.956 / 0.084 / 86
31.63 /0.954 / 0.072 / 87
29.81 /0.908 / 0.137 / 86

25.43 / 0.865 / 0.167 / 69
21.95/0.809 /0.217 /77
23.69 / 0.837/0.192 /73

25.39/0.859/0.217/ 53
2229 /0.802/0.253/ 55
23.84 /0.831/0.235/ 54

25.86 /0.869 / 0.193 /38
22.35/0.822 / 0.228 / 40
24.11/0.846 / 0.211 /39

25.09/0.865 /10.162 / 55
21.84/0.827 /10.204 / 58
23.47/0.846 /0.183 / 56

Scene
Bicycle
©  Garden
§ Stump
o Room
§ Counter
& Kitchen
S Bonsai
Average
01
03
= 05
=06
g 10
S 13
© 14
15
Average
¢ & Truck
£4  Train
e Average
S Dr John-
@Eﬂ son
A :;, Playroom
@ Average

29.01 / 0.884 7 0.274 /1 127

30.50 / 0.887 /0.247 /127
29.76 / 0.886 / 0.261 /127

28.75/0.886 / 0.282 /77

29.32/0.880/0.279 /83
29.04/0.883/0.281 /80

28.83 /0.882/0.285/ 104

30.22 /0.890 / 0.272 / 105
29.53 /1 0.886 / 0.279 / 104

28.65/0.887 /0.268 / 113

30.11/0.886 / 0.248 / 112
29.38 /10.887 /0.258 / 112

Table A11. Detailed results on a selection of datasets and methods with the number of Gaussians limited to 2M. Each field contains PSNR,
SSIM, LPIPS and FPS respectively. We highlight the best, second best and third best results among all. Slight discrepancies from the

main table are due to rounding.
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